Calmness of constraint systems with applications
نویسندگان
چکیده
The paper is devoted to the analysis of the calmness property for constraint set mappings. After some general characterizations, specific results are obtained for various types of constraints, e.g., one single nonsmooth inequality, differentiable constraints modeled by polyhedral sets, finitely and infinitely many differentiable inequalities. The obtained conditions enable the detection of calmness in a number of situations, where the standard criteria (via polyhedrality or the Aubin property) do not work. Their application in the framework of generalized differential calculus is explained and illustrated by examples associated with optimization and stability issues in connection with nonlinear complementarity problems or continuity of the value-at-risk.
منابع مشابه
Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces
Several notions of constraint qualifications are generalized from the setting of convex inequality systems to that of convex generalized equations. This is done and investigated in terms of the coderivatives and the normal cones, and thereby we provide some characterizations for convex generalized equations to have the metric subregularity. As applications, we establish formulas of the modulus ...
متن کاملStrong Abadie CQ, ACQ, calmness and linear regularity
The Abadie CQ (ACQ) for convex inequality systems is a fundamental notion in optimization and approximation theory. In terms of the contingent cone and tangent derivative, we extend the Abadie CQ to more general convex multifunction cases and introduce the strong ACQ for both multifunctions and inequality systems. Some seemly unrelated notions are unified by the new ACQ and strong ACQ. Relation...
متن کاملSubdifferential Conditions for Calmness of Convex Constraints
We study subdifferential conditions of the calmness property for multifunctions representing convex constraint systems in a Banach space. Extending earlier work in finite dimensions [R. Henrion and J. Outrata, J. Math. Anal. Appl., 258 (2001), pp. 110–130], we show that, in contrast to the stronger Aubin property of a multifunction (or metric regularity of its inverse), calmness can be ensured ...
متن کاملCharacterization of the Robust Isolated Calmness for a Class of Conic Programming Problems
This paper is devoted to studying the robust isolated calmness of the Karush– Kuhn–Tucker (KKT) solution mapping for a large class of interesting conic programming problems (including most commonly known ones arising from applications) at a locally optimal solution. Under the Robinson constraint qualification, we show that the KKT solution mapping is robustly isolated calm if and only if both t...
متن کاملThe Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs
We consider the optimal value reformulation of the bilevel programming problem. It is shown that the Mangasarian-Fromowitz constraint qualification in terms of the basic generalized differentiation constructions of Mordukhovich, which is weaker than the one in terms of Clarke’s nonsmooth tools, fails without any restrictive assumption. Some weakened forms of this constraint qualification are th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 104 شماره
صفحات -
تاریخ انتشار 2005